1.7 Appendix Chapter 1 Infinite Products

Unproved Result 1 If $\prod_{n=1}^{\infty} u_{n}$ converges, then the product of inverses, $\prod_{n=1}^{\infty} u_{n}^{-1}$, converges.
Proof Let $p_{n}=\prod_{i=1}^{n} u_{i}$ so that $p_{n} \rightarrow p$ with $p_{n} \neq 0$ for all $n \geq 1$ and $p \neq 0$. But then by the Quotient Law for Sequences $p_{n}^{-1} \rightarrow p^{-1}$ with $p^{-1} \neq 0$. This is the definition of $\prod_{n=1}^{\infty} u_{n}^{-1}$ converging.

Unproved Result 2 If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent (where the a_{n} are real or complex and $a_{n} \neq-1$ for all n, then the infinite product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges in that the limit

$$
\lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1+a_{n}\right)
$$

exists and is non-zero.
Proof Let $p_{n}=\prod_{i=1}^{n}\left(1+a_{i}\right)$ for $n \geq 1$ and $S=\sum_{n=1}^{\infty}\left|a_{n}\right|$ which, by assumption, converges.

For the first step use $1+x \leq \exp (x)$ for $x>0$. Then

$$
\begin{equation*}
\left|p_{n}\right| \leq \prod_{i=1}^{n}\left(1+\left|a_{i}\right|\right) \leq \prod_{i=1}^{n} \exp \left(\left|a_{i}\right|\right)=\exp \left(\sum_{i=1}^{n}\left|a_{i}\right|\right) \leq \exp (S), \tag{16}
\end{equation*}
$$

for all $n \geq 1$. Next observe that $p_{n}=\left(1+a_{n}\right) p_{n-1}$ for $n \geq 2$. Consider

$$
\begin{equation*}
p_{n}-p_{1}=\sum_{i=2}^{n}\left(p_{i}-p_{i-1}\right)=\sum_{i=2}^{n} a_{i} p_{i-1} . \tag{17}
\end{equation*}
$$

Then

$$
\begin{align*}
\sum_{i=2}^{n}\left|a_{i} p_{i-1}\right| & \leq \sum_{i=2}^{n}\left|a_{i}\right| e^{S} \quad \text { by } \tag{16}\\
& \leq S e^{S}
\end{align*}
$$

Thus the series $\sum_{i=2}^{n} a_{i} p_{i-1}$ converges (absolutely) and so, by (17), $\lim _{n \rightarrow \infty} p_{n}$ exists.

To show that p_{n} converges to a non-zero limit p the trick is to show that $\prod_{n=1}^{\infty}\left(1+a_{n}\right)^{-1}$ converges to q where $p q=1$. Then $p \neq 0$.

The idea is to use the same result as above that gave the convergence of $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$. So rewrite $\left(1+a_{n}\right)^{-1}=1+b_{n}$ and try to show that $\sum_{n=1}^{\infty}\left|b_{n}\right|$ converges. But

$$
b_{n}=\frac{1}{1+a_{n}}-1=-\frac{a_{n}}{1+a_{n}}
$$

The assumption $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges implies $a_{n} \rightarrow 0$ so there exists $N \geq$ 1 such that $\left|a_{n}\right|<1 / 2$, i.e. $\left|1+a_{n}\right| \geq 1 / 2$ and thus $\left|b_{n}\right| \leq 2\left|a_{n}\right|$ for all $n \geq N$. Then $\sum_{n=1}^{\infty}\left|b_{n}\right|$ converges by comparison with $\sum_{n=1}^{\infty} 2\left|a_{n}\right|$. The result follows.

