1.7 Appendix Chapter 1 Infinite Products

Unproved Result 1 If $\prod_{n=1}^{\infty} u_n$ converges, then the product of inverses, $\prod_{n=1}^{\infty} u_n^{-1}$, converges.

Proof Let $p_n = \prod_{i=1}^n u_i$ so that $p_n \to p$ with $p_n \neq 0$ for all $n \ge 1$ and $p \neq 0$. But then by the Quotient Law for Sequences $p_n^{-1} \to p^{-1}$ with $p^{-1} \neq 0$. This is the definition of $\prod_{n=1}^{\infty} u_n^{-1}$ converging.

Unproved Result 2 If the series $\sum_{n=1}^{\infty} |a_n|$ is convergent (where the a_n are real or complex and $a_n \neq -1$ for all n, then the infinite product $\prod_{n=1}^{\infty} (1+a_n)$ converges in that the limit

$$\lim_{N \to \infty} \prod_{n=1}^{N} \left(1 + a_n \right)$$

exists and is non-zero.

Proof Let $p_n = \prod_{i=1}^n (1 + a_i)$ for $n \ge 1$ and $S = \sum_{n=1}^\infty |a_n|$ which, by assumption, converges.

For the first step use $1 + x \leq \exp(x)$ for x > 0. Then

$$|p_n| \le \prod_{i=1}^n (1+|a_i|) \le \prod_{i=1}^n \exp(|a_i|) = \exp\left(\sum_{i=1}^n |a_i|\right) \le \exp(S), \quad (16)$$

for all $n \ge 1$. Next observe that $p_n = (1 + a_n) p_{n-1}$ for $n \ge 2$. Consider

$$p_n - p_1 = \sum_{i=2}^n (p_i - p_{i-1}) = \sum_{i=2}^n a_i p_{i-1}.$$
 (17)

Then

$$\sum_{i=2}^{n} |a_i p_{i-1}| \leq \sum_{i=2}^{n} |a_i| e^S \quad \text{by (16)}$$
$$\leq S e^S$$

Thus the series $\sum_{i=2}^{n} a_i p_{i-1}$ converges (absolutely) and so, by (17), $\lim_{n\to\infty} p_n$ exists.

To show that p_n converges to a *non-zero* limit p the **trick** is to show that $\prod_{n=1}^{\infty} (1+a_n)^{-1}$ converges to q where pq = 1. Then $p \neq 0$.

The idea is to use the same result as above that gave the convergence of $\prod_{n=1}^{\infty} (1 + a_n)$. So rewrite $(1 + a_n)^{-1} = 1 + b_n$ and try to show that $\sum_{n=1}^{\infty} |b_n|$ converges. But

$$b_n = \frac{1}{1+a_n} - 1 = -\frac{a_n}{1+a_n}.$$

The assumption $\sum_{n=1}^{\infty} |a_n|$ converges implies $a_n \to 0$ so there exists $N \ge 1$ such that $|a_n| < 1/2$, i.e. $|1 + a_n| \ge 1/2$ and thus $|b_n| \le 2 |a_n|$ for all $n \ge N$. Then $\sum_{n=1}^{\infty} |b_n|$ converges by comparison with $\sum_{n=1}^{\infty} 2 |a_n|$. The result follows.